
Sherlock Coverage Overview

Details

Protocol Customer: Mover
Audit Report: Nov 22nd, 2022 Final Report
Total Coverage Amount: 50,000 USDC
TVL Coverage Premium: 2.0%, per year
Current Covered TVL: The lesser of the Total Coverage Amount, the TVL of Protocol
Customer, or 67% of Sherlock Staking Pool
TVL Coverage Provided for the Following Chain(s): Ethereum Layer 1, Polygon, Arbitrum,
Optimism
Bug Bounty Coverage Amount: 10% of Total Coverage Amount
Bug Bounty Coverage Premium: 0.0%, per year
Claims to be paid in: USDC
Protocol Code Commit hash: 8f1922287f353bab7ee7a91bc7ba077f74859436
Branch: main
Covered Contract(s):

1. ExchangeProxy.sol
2. RLPReader.sol
3. SafeAllowanceReset.sol
4. ByteUtil.sol
5. SafeAllowanceResetUpgradeable.sol
6. HardenedTopupProxy.sol
7. ContractWhitelist.sol

Glossary
Protocol Code - The contract(s) listed under “Covered Contract(s)” above
Protocol Agent Address - The smart contract address provided to Sherlock, which is the
address from which all claims are made and payments in connection with successful
claims are received by the Protocol Customer

© 2022 SHERLOCK Audit + Coverage Overview | 1

https://github.com/sherlock-protocol/sherlock-reports/blob/main/audits/2022.11.22%20-%20Final%20-%20Mover%20Audit%20Report.pdf
https://app.sherlock.xyz/overview

Current TVL - The total value locked in the Protocol Customer’s Covered Contract(s) (as
defined above) as measured monthly by Sherlock
Staking Pool - The total value of all tokens (USDC, etc.) held in Sherlock’s V2 staking

Sherlock TVL Coverage
If Sherlock has agreed to provide coverage on the Protocol Customer’s Current Covered
TVL, this coverage will begin on the date the protocol has decided, provided all criteria in
“Initiating and Maintaining Active Coverage” have been met.

Please see the section below, “The Spirit of Sherlock Exploit Protection”, for a more
detailed discussion around the types of smart contract and economic risks Sherlock
views as covered events.

In the event of a covered smart contract exploit or economic exploit, the Protocol
Customer can submit a claim and be reimbursed for lost funds up to the stated Coverage
Amount. Please see the sections “Claim Validity”, “Sherlock Claims Process”, “Paying a
Claim”, and “Deciding on Claims”, below for more detail.

In the event that Sherlock’s Staking Pool TVL drops below 150% of the Coverage Amount
agreed upon with the Protocol Customer, the Current Covered TVL will be temporarily
decreased to the lesser of 67% of the Staking Pool TVL and the Protocol Customer TVL
until the situation is remedied. This means the Protocol Customer will never overpay for
their current coverage. Sherlock’s Staking Pool TVL can drop for many reasons, including
whitehat payouts for Covered Protocols, claims submitted by Covered Protocols for
blackhat exploits, a blackhat exploit of Sherlock’s staking contracts, and defaults in the
yield strategies implemented by Sherlock protocol with its staking pool, among others.

Coverage Premium Pricing
Coverage premium pricing is defined above in the “Details” section. Sherlock reserves the
right to not provide coverage and refund any up-front coverage payments if the auditors
don’t feel comfortable with the codebase after the audit has been completed.

Sherlock only calculates the TVL Coverage Premium on the lesser of a Protocol
Customer’s Current TVL and Coverage Amount.

© 2022 SHERLOCK Audit + Coverage Overview | 2

Bug Bounty Coverage
At the completion of the audit, the Protocol Customer will implement a bug bounty
program with a bounty valued at “Bug Bounty Coverage Amount” defined in the “Details”
section on page 1 through Immunefi, or an alternative platform agreed upon by Sherlock
and the Protocol Customer. Bug bounty pricing is defined in “Details”. Typically, if a
protocol purchases TVL Coverage + Bug Bounty Coverage, the Bug Bounty pricing is
baked into the cost of the Coverage Premium. Sherlock will cover the payouts associated
with valid critical submissions. Covered bug bounty claims are generally characterized by
vulnerabilities that, if executed on mainnet, would have resulted in a payout as defined by
the sections “Claim Validity”, “Sherlock Claims Process”, “Paying a Claim”, and “Deciding
on Claims” below.

Initiating and Maintaining Active Coverage
To initiate coverage, a Protocol Customer should send a deposit to Sherlock’s smart
contract address defined in the “Payment Process” section, for at least 3 months worth of
payment assuming the Protocol Customer’s TVL reaches the maximum Coverage
Amount.

The amount of the deposit that can be withdrawn by the Protocol Customer will
continuously decrease while coverage is active. This is the premium amount a Protocol
Customer is “charged”. Sherlock updates the Protocol Customer’s Current TVL monthly to
ensure the Protocol Customer doesn’t overpay for coverage.

Over the course of 6 months, the Protocol Customer will need to increase their deposit to
the Sherlock payment account if the difference between the “active balance” of funds and
the accumulated premium debt is less than $500, as they run the risk of being temporarily
removed from coverage. The coverage will end at the first block after the protocol is
removed from coverage. For the avoidance of doubt, even if the Protocol Customer is not
currently under coverage, an exploit that occurred during a block before the coverage
ended is still valid and Sherlock will properly assess and pay out that claim when
necessary.

At the end of the 6 month coverage period, the Protocol Customer can remove any
“unused” funds in their deposit, or request a refund from Sherlock, which will be paid back
to the Protocol Customer at an address provided. Alternatively, if a Protocol Customer will
be extending coverage for another 6 months, the funds deposited may remain and rolled
into the next coverage period.

© 2022 SHERLOCK Audit + Coverage Overview | 3

Sherlock designed this payment philosophy to help Protocol Customers stay capital
efficient and avoid “overpaying” for coverage they don’t use. Submitting a premium
deposit sufficiently large helps to avoid the Protocol Customer from running the risk of a
spike up in TVL, requiring the Protocol Customer team to quickly increase their “active
balance”, so they are not temporarily removed from coverage until they fund their
account.

The Protocol Customer is prohibited from making material changes to the Protocol Code
which have not been approved and audited by either Sherlock’s Watsons (see section
above on “Supplemental Audit Needs”), or an approved external auditor. If the changes are
approved, coverage will automatically extend to the new contracts and Sherlock will
follow-up with a revised Audit + Coverage Overview, noting the new “Covered Contract(s)”
in the section “Details”.

Sherlock will continue to provide active coverage on all contracts that were originally
reviewed by Sherlock and deployed, even if a new contract is added somewhere in the
system and unaudited. Basically, this just means that Sherlock is not “off the hook” on all
the covered contracts if the protocol deploys one incremental contract that has not been
approved by Sherlock.

In the event Sherlock or an approved auditor does not review the new code changes and
an exploit occurs, Sherlock’s two primary claims systems, the SPCC and UMA Optimistic
Oracle (see section “Claim Validity” below), will be used to assess whether the exploit
would have happened regardless of the unaudited changes, or whether the exploit was
caused because of the unaudited changes. In the former situation, where the exploit
would have happened regardless, this is a valid claim and will be covered by Sherlock. In
the latter situation, where the exploit happened because of the unaudited changes, this
would not be covered by Sherlock.

Payment Process
All Protocol Customer payments to Sherlock will be made in USDC to the following
Ethereum smart contract address: 0x666B8EbFbF4D5f0CE56962a25635CfF563F13161

© 2022 SHERLOCK Audit + Coverage Overview | 4

Claim Validity
A Protocol Customer will bring a possible covered exploit in their protocol to the attention
of Sherlock’s security team. It is likely the security experts at Sherlock in charge of that
Protocol Customer will be involved in this process of discovering a possible exploit and
understanding its nature. If there’s a possibility that the exploit would be covered, the
Protocol Customer will be tasked with deciding the amount of the claim. It is likely the
security experts at Sherlock in charge of that Protocol Customer will also be heavily
involved in advising the proper amount to create a claim for.

Once a possible exploit and the amount claimed by Protocol Customer is brought to the
attention of Sherlock, the process of deciding the validity of the claim begins. The first
step is to bring the exploit and amount of the claim to the attention of the Sherlock
Protocol Claims Committee (“SPCC”) via the Protocol Agent Address. The SPCC is made
up of members of the core team of Sherlock as well as official advisors to Sherlock.
These members will be well-versed in the general nature of exploits and events covered
by Sherlock as detailed in this statement of coverage. This committee will be composed
of some of the foremost security experts in the DeFi space. All of the members of the
SPCC will have a stake in Sherlock (likely in the form of tokens or equity) and will have an
interest in doing what is best for the long-term wellbeing of Sherlock. They will also have
reputations and public identities existing outside of Sherlock that they will want to uphold.
These factors will make it very likely that the members of the SPCC will see it in their best
interest to make the most accurate claims decision possible.

The decision made by the SPCC will be binary (either a claim will be accepted or not).
Once a decision is made on a claim by the SPCC, there are a few possible paths. The first
path for a Protocol Customer is to accept the decision.

The second path is to revise the claim (usually the amount of the claim) and re-submit. A
Protocol Customer is limited to 3 submissions for each potential exploit (to be defined by
the block number timestamp at which the potential exploit began).

The third and last path for the Protocol Customer is to escalate to arbitration. This would
require the Protocol Customer to “stake” the current fee charged by UMA to use their
Optimistic Oracle (currently priced at ~22k USDC). The escalation would move the claim
decision from the SPCC’s hands into the hands of UMA’s Optimistic Oracle, more
specifically UMA’s Data Verification Mechanism. The Protocol Customer will have 4
weeks to escalate the claim to UMA’s Optimistic Oracle once it has been denied by the
SPCC. When escalated to UMA’s Optimistic Oracle, the claims decision will be voted on by

© 2022 SHERLOCK Audit + Coverage Overview | 5

UMA tokenholders and the resolution of that vote will be the final claim decision
(overruling the SPCC).

If the Protocol Customer is proven correct, then the amount specified by their claim will
be paid out. They will also receive their stake back, minus the fee charged by UMA for
using the Optimistic Oracle. If the Protocol Customer’s escalation proves to be
unsuccessful, then the amount specified by the claim is not paid out and the stake is not
returned. Further reading related to UMA’s Optimistic Oracle and Data Verification
Mechanism can be found here.

Sherlock Claims Process

Deciding on Claims
When trying to decide if a claim falls under coverage or not, there are three main
questions to ask (which will be explained in detail in the following pages):

1) Was there an unintended loss of user funds due to a flaw/oversight in the
protocol? Basically did an exploit occur?

© 2022 SHERLOCK Audit + Coverage Overview | 6

https://docs.umaproject.org/getting-started/oracle

2) Does this exploit fall into the category of a “Known Economic Risk” explained
below?

3) Does this exploit fall into a category under “Specific Events NOT Covered by
Sherlock” listed below?

If 1) is true, meaning an exploit did occur, and 2) and 3) are false, then it is likely that this
event should be covered and paid out by Sherlock. The reason for approaching the
decision in this manner is that Sherlock provides some possibility for “unknown unknown”
exploits occurring. And if this event is indeed an exploit, but Sherlock has not provided
language around handling it in the letter or spirit of this document (specifically whether it
should NOT be covered), then this new form of exploit should likely be covered by
Sherlock.

Utilization of Total Coverage Amount

TVL Coverage Utilization
The Protocol Customer will be eligible to submit claims up to their Total Coverage
Amount for an exploit that occurred at any time when they maintained active coverage. If
a claim is paid out by Sherlock, the Protocol Customer’s Total Coverage Amount is
reduced by the amount that was paid out. Premiums will continue to be calculated using
the pre-determined rate above in “Details”, on the lesser of the Current TVL and new Total
Coverage Amount. Sherlock and the Protocol Customer will collaboratively discuss
whether the necessary steps have been taken to “replenish” their Total Coverage Amount
back to the original amount agreed upon. During this collaborative discussion, Sherlock
may refuse the right to “replenish” the Total Coverage Amount back to the original
amount, and / or adjust the price at which the “replenished” coverage will be calculated.

Said simply, a Protocol Customer may submit claims for exploits until they have used the
entirety of their Total Coverage Amount, at which point they will need to discuss
replenishing their Total Coverage Amount with Sherlock.

After an exploit payout has occurred, Sherlock will provide an updated version of this
document, which explicitly lays out the current agreed-upon Total Coverage Amount.

Bug Bounty Coverage Utilization
Similarly, if a covered bug bounty submission is paid out by Sherlock, the remaining Bug
Bounty Coverage Amount is the original amount, minus the bug bounty paid out. At which

© 2022 SHERLOCK Audit + Coverage Overview | 7

point, Sherlock and the Protocol Customer will discuss raising the bug bounty back to the
original size of the Bug Bounty Coverage.

After an exploit payout has occurred, Sherlock will provide an updated version of this
document, which explicitly lays out the current agreed-upon Bug Bounty Coverage
Amount.

The Spirit of Sherlock Exploit Protection
This document will outline in detail all of the areas of coverage by Sherlock against which
claims can be made (or not made). Because there are always bound to be gaps in explicit
wording, Sherlock also attempts to explain the “spirit” of what the later paragraphs will
convey, so that unforeseen exploits can still be handled well.

Known Economic Risks
There are two important categories of coverage at Sherlock. The first is bug-related
coverage. If a smart contract has a syntax error or otherwise fails to execute its logic as
intended due to a mistake related to code being written improperly, that would likely be
considered a bug-related incident. However, if there is still a loss of funds despite the
code being technically correct in what it intended to do (as a third-party would observe),
this would likely fall more in the category of an economic incident. The latter (economic
incidents) are not so much a failure of code or syntax as they are a failure of economic
design. The difference can be subtle and there are definitely gray areas, but generally if
the literal code functions in the way a developer intended, that is likely an economic error.
If the literal code does not function as intended, that is likely a bug-related error.

We can create a quadrant of coverage
with four types of errors: unknown
bug-related errors, known bug-related
errors, unknown economic errors, and
known economic errors. An unknown
error is simply something that the
developers/auditors are unaware of
(until it surfaces). This means a
common bug (in a known class of
bugs) can still be an unknown bug in
a specific contract because it was not
identified in that contract. Whether a

© 2022 SHERLOCK Audit + Coverage Overview | 8

bug-related error is known or unknown, an incident related to a smart contract bug should
generally be covered. The onus is on Sherlock’s security team to price known bugs
properly or fix them. And unknown bugs are inherently unforeseeable so they should be
covered.

For unknown economic risks, the sentiment is the same. Because it was unknown (and
therefore unforeseeable), it should be covered.

But known economic risks are a bit different. Almost every protocol has some set of
known economic risks. For example, if the value of Maker collateral falls below the value
of the deposits made into the protocol, the depositors are at risk of losing funds. Same
goes for almost anything related to token price volatility. If a token price goes down,
holders of the token or parties who interact with that token are at risk of losing funds
related to the price drop. These are examples of known economic risks. Sometimes,
these risks are a large part of the reason APYs are so high for certain opportunities.
These are not risks Sherlock intends to cover. Please see the “Specific Economic Events
Not Covered By Sherlock” section below which includes some well-known economic risks
for various protocol types.

Known Bug-Related Risks
If a developer / team understands the implications of a known bug-related risk, but
deems it an “acceptable risk” for their protocol, it should still be paid out as long as the
team disclosed it to (or at least did not make efforts to conceal it from) the Sherlock
smart contract team. As long as the Sherlock team knows about the “acceptable” risk
around the code, it can be priced properly in Sherlock’s model.

However, if a team makes considerable effort to conceal (or obfuscate) a certain
“acceptable risk” or known risk, Sherlock may have grounds to not pay out. This clause
exists mainly to disincentivize protocol teams from concealing as many
bugs/vulnerabilities as they can from the Sherlock smart contract team in order to get a
lower rate for coverage.

With that in mind, Sherlock attempts to enumerate, in as clear terms as possible, the
events that will or will not be covered by Sherlock coverage:

© 2022 SHERLOCK Audit + Coverage Overview | 9

Specific Economic Events NOT Covered by Sherlock

Token Price Fluctuations
Any loss of funds due to a change in token price or stablecoin depegging should almost
certainly not be covered by Sherlock. Any protocol covered by Sherlock must know
exactly which tokens it could have the opportunity to interact with. Any new token that a
protocol intends to interact with should be treated just like any other new integration: with
a security review by Sherlock or other approved security teams before being executed on
mainnet. And any protocol should have contingencies in their code for the price of all of
these tokens dropping to zero or approaching infinity. The volatility of a token price is a
perfect example of a “known economic risk” as recounted in the preceding section.

Changes in token price especially apply on the user side. The risk of a token’s price going
down (or up in the case of short-selling) should always be considered a known risk and
thus a loss of funds caused by a change in the price of a token alone should not be a
claimable event.

In some instances, exploits that involve token price fluctuations (among other things) can
be covered. See the “Oracle Manipulations” section below.

Collateral Shortfalls (Lending Protocols)
This section is especially applicable to lending protocols and related protocols. Any
lending protocol is well aware that one of the known economic risks is a shortfall in
collateral, which would leave depositors unable to collect some of all of their principal. Of
course, these collateral shortfalls could be caused by a bug in a smart contract, in which
case Sherlock should cover the event. But a common, known economic risk of lending
protocols is collateral shortfalls related to rapid and/or large changes in the price of
tokens being used as collateral. This type of collateral shortfall would not be covered by
Sherlock.

Unavailability of Funds (Lending Protocols)
This section is especially applicable to lending protocols and related protocols. There
may be situations where a depositor’s tokens are not available to be withdrawn due to
high utilization (on the borrowing side) of the depositor’s tokens. This is a known
economic risk related to lending protocols and thus would not be covered.

© 2022 SHERLOCK Audit + Coverage Overview | 10

Impermanent Loss (AMM Protocols)
This section is especially relevant for AMM-style protocols. Any LP in an AMM-style
protocol should be aware of the risk of impermanent loss when providing liquidity to that
protocol.

Slippage (AMM Protocols)
This section is especially relevant for AMM or exchange-style protocols. Any user who is
doing transactions with an AMM or exchange-style protocol should be aware that losses
due to slippage are possible.

Counterparty Risk (Undercollateralized Protocols)
This section is especially relevant for uncollateralized or undercollateralized lending
protocols. If a counterparty or intermediary who received a loan does not repay the loan
or has some other payment-related issue, this should not be covered by Sherlock.

Transaction Ordering Attacks / Frontrunning / Sandwich Attacks / MEV-Related
Attacks
These types of attacks involve malicious addresses (often controlled by bots) that spot
profitable transactions in the mempool and then execute the transaction themselves in
order to capture the profit. Or the malicious address sees a certain state change that will
be caused by a transaction in the mempool, and calls a function or executes a transaction
to take advantage of that state change. The biggest reason that Sherlock cannot cover
these types of attacks is because the potential for fraud is too high. If a user or protocol
“loses” funds because their transaction is front-run in the mempool, it is very difficult for
Sherlock to know that the address doing the frontrunning is not also controlled by the
same user or protocol.

However, in certain cases, these types of events would be covered by Sherlock. If, for
whatever reason, a protocol tries to pass private or randomness-reliant information
through the mempool, this should be covered by Sherlock (see “Specific Known
Bug-Related Attacks” below) because the Sherlock security team should catch these
types of bugs and in those cases it is fairly clear that unsound logic was being used in the
code. In other cases, it’s not always clear what the intentions of the developers were and
therefore Sherlock cannot cover those cases.

Another area where this would be covered is simply bad logic in the protocol which
doesn’t check for certain conditions. The specific example here is the ERC20 approve
race-condition exploit.

© 2022 SHERLOCK Audit + Coverage Overview | 11

https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729

+ fier)
would be covered. This is a mistake in the code, not a “rug pull” necessarily.

Mistakes in Deployment
If a vulnerability becomes possible due to a poorly executed deployment of smart contracts, this
is generally not something Sherlock would cover. However, Sherlock can provide services to check
the accuracy/effectiveness of a deployment and then cover deployment-related risks. Right now,
this is seen as an “add-on” to normal security services provided by Sherlock because it needs to
be done at deployment time instead of during an audit.

Phishing attacks
Users affected by phishing attacks related to their wallet (Metamask, etc.) would not be covered
by a specific protocol’s policy. Even if the tokens involved were tokens related to or distributed by
a specific protocol that has a policy with Sherlock.

Phishing attacks related to “fake” websites (i.e. websites hosted at domains other than the
protocol’s sponsored website/app) would also not be covered. The onus is on the user to ensure
they are actually interacting with a covered protocol, not a duplicate, replica, or look-alike website
or protocol.

Phishing attacks spawning from a covered protocol’s sponsored website/app are also not
covered (such as hijacking a DApp’s DNS). Sherlock currently does not have the resources to
ensure and monitor the security of website / frontend-related vulnerabilities, but this may change
in the future. If getting coverage for this kind of attack is a very high priority for a protocol team,
we ask that the team to reach out to us.

Front-end bugs
In the same vein as phishing attacks, Sherlock currently does not have the resources to ensure
and monitor the security of website / frontend-related vulnerabilities, but this may change in the
future. So Sherlock cannot cover any unintended loss of funds resulting from an exploit/bug in the
frontend (defined as non-Solidity code or code that is not deployed on a blockchain) of a protocol
customer. This means that code related to libraries like Web3.js or Ethers.js cannot be covered
even if it is interacting with smart contracts. The code covered must be deployed on a blockchain
and frontend code does not meet this criteria.

Specific Events That Should Not Be Relied on for Decisions

Flash Loan
A flash loan by itself is simply a way to acquire more tokens. Any attack that can be
accomplished with a flash loan can also be accomplished without a flash loan (by a

© 2022 SHERLOCK Audit + Coverage Overview | 13

whale, etc.). Therefore, the presence of a flash loan does not necessarily mean that an
exploit has occurred. However, flash loans are often accompanied by other events (oracle
manipulation, etc.) which are exploits. And, of course, if a flash loan is a part of a broader
unknown economic attack, then the event should be covered. If the flash loan is simply
taking advantage of a known economic attack (liquidation may occur if a token price
drops), then it would not be covered by Sherlock. The presence of flash loans by
themselves in a potential exploit event are not good indicators of whether an event should
be covered or not.

Oracle Manipulations
Oracles manipulations are well-known events that have caused the loss of tokens in the
past. Unfortunately, some oracles (a.k.a. price feeds) like Uniswap V3 are nearly
impossible to perfectly protect against manipulation. The only way to protect a Uniswap
V3 oracle against manipulation is for the protocol team or Sherlock to LP a certain
amount of funds in the pool, across the entire tick range, and never move them. Because
Sherlock and most protocol teams are not able or willing to provide this liquidity, Uniswap
V3 oracles must always be used “at your own risk.” For this reason, Sherlock cannot cover
oracle manipulations on Uniswap V3 price feeds and other DEX-derived price feeds.

However, the Sherlock team has decided that Chainlink oracles have a strong enough
history of reliably providing accurate prices and so any oracle manipulation that happens
due to a malfunctioning Chainlink oracle WILL be covered by Sherlock. All other oracles
outside of Chainlink do not have a strong enough history for Sherlock to comfortably
cover their risks.

Specific Events Covered by Sherlock

Specific Known “Bug-related” Attacks
● Integer underflow/overflow
● Reentrancy including cross-function reentrancy
● Silent failing sends / unchecked sends / unchecked low-level calls / delegatecall to

untrusted callee
● Unbound loops
● Self-destruct-related exploits / forcibly sending Ether to a contract
● Absence of required participants
● Denial-of-service due to fallback function, gas limit reached, unexpected throw,

unexpected kill

© 2022 SHERLOCK Audit + Coverage Overview | 14

https://consensys.github.io/smart-contract-best-practices/known_attacks/#cross-function-reentrancy

● False randomness / reliance on “private” information being sent through the
mempool

● Time manipulation / timestamp dependence
● Short address attacks
● Insufficient gas griefing
● Authorization through tx.origin
● Uninitialized storage pointer
● Floating pragma / outdated compiler version / compiler-related bugs
● Missing checks / callable initialization function
● Missing variables / using the wrong variable
● Proxy/upgradability-related attacks (such as the OpenZeppelin UUPS bug)
● External dependencies (such as OpenZeppelin libraries)

Known “bug-related” attacks not listed here
The list of specific, known bug-related attacks above is surely incomplete, but is provided
mainly for convenience. Any attack that can be classified as bug-related but is not listed
under “Specific Events NOT Covered By Sherlock” should inherently be covered by
Sherlock.

Events that Combine Different Attacks
Many exploits combine multiple types of events to disrupt a protocol. As long as just one
of the events in the combined attack is determined to be covered by Sherlock, then the
entire aggregated attack should be covered.

Composability
Sherlock recognizes that composability and a protocol’s need to integrate with other
projects is a valuable part of the DeFi ecosystem. However, for the security of Sherlock’s
staking pool, and consequently its covered customers, Sherlock needs to take a slightly
risk-averse approach to how integrations are covered.

Both extremes seem unrealistic to expect. It’s unreasonable to *only* cover integrations
that are done with protocols previously audited by Sherlock. However, it’s equally
unreasonable to expect Sherlock to cover any integration that a protocol could work with.
So, Sherlock is taking an incremental approach, where the covered integrations will
include a whitelisted set of protocols, as well as any protocol that has previously been
audited by Sherlock.

© 2022 SHERLOCK Audit + Coverage Overview | 15

https://consensys.github.io/smart-contract-best-practices/known_attacks/#insufficient-gas-griefing
https://cwe.mitre.org/data/definitions/824.html
https://geeksg.medium.com/my-journey-to-disclosing-a-vulnerability-that-can-lock-up-millions-in-ethereum-dcb5754ad9bc

The current list (which will update at Sherlock audits more protocols) can be found here:
https://github.com/sherlock-protocol/integrations-whitelist/commit/b343edd5d6d1f44e1
1abfc75c63240c6fc546081

If the uncovered protocol has coverage from Sherlock or another coverage provider, and a
payout takes place (or is scheduled to take place) for that protocol, and the Protocol
Customer receives reimbursement from that payout, then the total amount possible to be
paid out to the Protocol Customer will be netted against the first payout. This is to ensure
that Sherlock doesn’t pay the same affected party double their loss amount.

Coverage of Layer 2, Sidechain, and Other Chain Related Risk
Sherlock seeks to provide some degree of protection for user funds that reside on
non-Ethereum Layer 1 and Layer 2 chains. Sherlock and the Protocol Customer should
expressly state in the “Details” section which chains are covered.

If a bug is discovered in the L2/sidechain code and NOT the protocol code, then the
maximum amount of payout for that bug across all covered protocols is 50% of the
staking pool funds. Of course, the maximum payout per-protocol will also be limited by
the size of the coverage amount for that specific protocol.

Bugs in actual L1 or L2 blockchain code should not be paid out if they simply cause the
chain to freeze (i.e. not produce new blocks) for a certain period of time. Any protocol
building on top of an L1 or L2 should be resilient to long periods of time where no new
blocks are created. Unfortunately, these freezes are extremely common on L1s and L2s.
However, if the bug in the L1 or L2 code results in a freeze that is expected to be
permanent (i.e. funds are trapped or effectively lost forever) then Sherlock would consider
this to be a bug that SHOULD get paid out according to the section paragraph in this
section.

Events Specific to Mover
Any issues found in the audit report which were acknowledged by the protocol team, or not fixed,
will be excluded from coverage.

Other specific events for the protocol include:
N/A

© 2022 SHERLOCK Audit + Coverage Overview | 16

https://github.com/sherlock-protocol/integrations-whitelist/commit/b343edd5d6d1f44e11abfc75c63240c6fc546081
https://github.com/sherlock-protocol/integrations-whitelist/commit/b343edd5d6d1f44e11abfc75c63240c6fc546081

